Compatible complex structures on twistor space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compatible complex structures on twistor space

— Let M be a Riemannian 4-manifold. The associated twistor space is a bundle whose total space Z admits a natural metric. The aim of this article is to study properties of complex structures on Z which are compatible with the fibration and the metric. The results obtained enable us to translate some metric properties on M (scalar flat, scalar-flat Kähler...) in terms of complex properties of it...

متن کامل

Compatible Complex Structures on Twistor Spaces

Let (M, g) be an oriented 4-dimensional Riemannian manifold (not necessarily compact). Due to the Hodge-star operator ⋆, we have a decomposition of the bivector bundle ∧2 TM = ∧+ ⊕ ∧− . Here ∧± is the eigen-subbundle for the eigenvalue ±1 of ⋆. The metric g on M induces a metric, denoted by < , >, on the bundle ∧2 TM . Let π : Z = S (∧+) −→ M be the sphere bundle; the fiber over a point m ∈ M p...

متن کامل

Loops in Twistor Space

We elucidate the one-loop twistor-space structure corresponding to momentum-space MHV diagrams. We also discuss the infrared divergences, and argue that only a limited set of MHV diagrams contain them. We show how to introduce a twistor-space regulator corresponding to dimensional regularization for the infrared-divergent diagrams. We also evaluate explicitly the ‘holomorphic anomaly’ pointed o...

متن کامل

Mixed twistor structures

The purpose of this paper is to introduce the notion of mixed twistor structure as a generalization of the notion of mixed Hodge structure. Recall that a mixed Hodge structure is a vector space V with three filtrations F , F ′ and W (the first two decreasing, the last increasing) such that the two filtrations F and F ′ induce i-opposed filtrations on Gr i (V ). (Generally (V,W ) is required to ...

متن کامل

On the Complex Geometry of Twistor Spaces

In the rst part of this note we present a brief account of some recent results which have been obtained by several authors using twistor techniques. They are mainly concerned with bimeromorphic properties of complex manifolds. In the second half we concentrate on twistor spaces of anti-self-dual complex surfaces. Following Tsanov Ts] and thanks to some recent joint work with Kim and LeBrun KP]]...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l’institut Fourier

سال: 2011

ISSN: 0373-0956,1777-5310

DOI: 10.5802/aif.2671